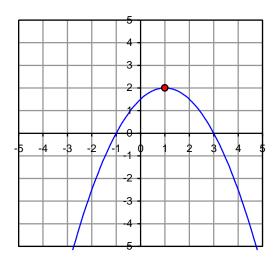


Glossar: Scheitelpunktform


Scheitelpunktform einer quadratischen Funktion f [Analysis]

$$f(x) = a (x-x_S)^2 + y_S$$
,
wobei a, x_S und $y_S \in \mathbb{R}$ und außerdem $a \neq 0$

Diese Form wird Scheitelpunktform von f genannt, weil man die Koordinaten des Scheitelpunkts direkt ablesen kann: es ist S $(x_S \mid y_S)$.

a ist der <u>Leitkoeffizient</u> von f.

Bsp.: $f(x) = -0.5(x-1)^2 + 2$ hat den <u>Scheitelpunkt</u> S(1 | 2).

An der Scheitelpunktform kann man gut nachvollziehen, durch welche "**geometrischen Operationen**" die Parabel f aus der "Standardnormalparabel" x^2 hervorgegangen ist:

$$-0.5(x-1)^2+2$$

ist an der x-Achse gespiegelt (wegen dem – von der -0,5), um $\frac{1}{2}$ gestaucht (wegen der 0,5 von -0,5),

um 1 nach rechts verschoben (wegen der -1 hinter dem x) und um 2 nach oben verschoben (wegen der +2 nach der Klammer)

Umformung in Scheitelpunktform ausgehend von der Normalform: <u>hier</u>

Beispiel Berechnung der <u>Nullstellen</u> ausgehend von der Scheitelpunktform: <u>hier</u>

Beispiel Scheitelpunktform herausfinden mit dem TI30XPro: hier

Check, ob du dich mit der Scheitelpunktform auskennst: hier

